20 research outputs found

    Aggregation of Descriptive Regularization Methods with Hardware/Software Co-Design for Remote Sensing Imaging

    Get PDF
    This study consider the problem of high-resolution imaging of the remote sensing (RS) environment formalized in terms of a nonlinear ill- posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the wavefield scattered from an extended remotely sensed scene (referred to as the scene image). However, the remote sensing techniques for reconstructive imaging in many RS application areas are relatively unacceptable for being implemented in a (near) real time implementation. In this work, we address a new aggregated descriptive-regularization (DR) method and the Hardware/Software (HW/SW) co-design for the SSP reconstruction from the uncertain speckle-corrupted measurement data in a computationally efficient parallel fashion that meets the (near) real time image processing requirements. The hardware design is performed via efficient systolic arrays (SAs). Finally, the efficiency both in resolution enhancement and in computational complexity reduction metrics of the aggregated descriptive-regularized and the HW/SW co-design method is presented via numerical simulations and by the performance analysis of the implementation based on a Xilinx Field Programmable Gate Array (FPGA) XC4VSX35-10ff668.Universidad de GuadalajaraUniversidad Autónoma de YucatánInstituto Tecnológico de Mérid

    Enhancement and Edge-Preserving Denoising: An OpenCL-Based Approach for Remote Sensing Imagery

    Get PDF
    Image enhancement and edge-preserving denoising are relevant steps before classification or other postprocessing techniques for remote sensing images. However, multisensor array systems are able to simultaneously capture several low-resolution images from the same area on different wavelengths, forming a high spatial/spectral resolution image and raising a series of new challenges. In this paper, an open computing language based parallel implementation approach is presented for near real-time enhancement based on Bayesian maximum entropy (BME), as well as an edge-preserving denoising algorithm for remote sensing imagery, which uses the local linear Stein’s unbiased risk estimate (LLSURE). BME was selected for its results on synthetic aperture radar image enhancement, whereas LLSURE has shown better noise removal properties than other commonly used methods. Within this context, image processing methods are algorithmically adapted via parallel computing techniques and efficiently implemented using CPUs and commodity graphics processing units (GPUs). Experimental results demonstrate the reduction of computational load of real-world image processing for near real-time GPU adapted implementation.ITESO, A.C

    An FPGA Kalman-MPPT implementation adapted in SST-based dual active bridge converters for DC microgrids systems

    Get PDF
    The design of digital hardware controllers for the integration of renewable energy sources in DC microgrids is a research topic of interest. In this paper, a Kalman filter-based maximum power point tracking algorithm is implemented in an FPGA and adapted in a dual active bridge (DAB) converter topology for DC microgrids. This approach uses the Hardware/Software (HW/SW) co-design paradigm in combination with a pipelined piecewise polynomial approximation design of the Kalman-maximum power point tracking (MPPT) algorithm instead of traditional lookup table (LUT)-based methods. Experimental results reveal a good integration of the Kalman-MPPT design with the DAB-based converter, particularly during irradiation and temperature variations due to changes in weather conditions, as well as a good balanced hardware design in complexity and area-time performance compared to other state-of-art FPGA designs

    DISEÑO DE SISTEMAS FOTOVOLTAICOS CONECTADOS A RED CON TRANSFORMADOR DE ESTADO SÓLIDO Y REDES NEURONALES (DESIGN OF GRID TIED PHOTOVOLTAIC SYSTEMS WITH SOLID STATE TRANSFORMER AND NEURAL NETWORKS)

    Get PDF
    Este artículo presenta el diseño de un sistema de generación de energía fotovoltaico incorporando un transformador de estado sólido para la integración a red. El transformador está comprendido de dos etapas, la conversión DC-DC (Dual Active Bridge) e Inversor, alimentados por un arreglo de módulos fotovoltaicos. El principal objetivo de esta investigación es poder extraer la máxima potencia del arreglo, utilizando un control proporcional integral y una red neuronal capaz de determinar el voltaje de máxima potencia necesario para transferir la potencia cosechada a la etapa de conversión DC-DC.This paper presents the design of a photovoltaic energy generation system incorporating a solid-state transformer for grid integration. The transformer is composed of two stages, DC-DC conversion via a dual active bridge and an inverter, feed from a photovoltaic module array. The main objective of this research is to extract the maximum power from the array, using a proportional-integral control and a neural network able to estimate the maximum power point voltage required to transfer the harvested power into the DC-DC conversion stage

    Dual Super-Systolic Core for Real-Time Reconstructive Algorithms of High-Resolution Radar/SAR Imaging Systems

    Get PDF
    A high-speed dual super-systolic core for reconstructive signal processing (SP) operations consists of a double parallel systolic array (SA) machine in which each processing element of the array is also conceptualized as another SA in a bit-level fashion. In this study, we addressed the design of a high-speed dual super-systolic array (SSA) core for the enhancement/reconstruction of remote sensing (RS) imaging of radar/synthetic aperture radar (SAR) sensor systems. The selected reconstructive SP algorithms are efficiently transformed in their parallel representation and then, they are mapped into an efficient high performance embedded computing (HPEC) architecture in reconfigurable Xilinx field programmable gate array (FPGA) platforms. As an implementation test case, the proposed approach was aggregated in a HW/SW co-design scheme in order to solve the nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) from a remotely sensed scene. We show how such dual SSA core, drastically reduces the computational load of complex RS regularization techniques achieving the required real-time operational mode

    Energy Efficient Framework for a AIoT Cardiac Arrhythmia Detection System Wearable during Sport

    No full text
    The growing market of wearables is expanding into different areas of application such as devices designed to improve and monitor sport activities. This in turn is pushing research on low-cost, very low-power wearable systems with increased analysis capabilities. This paper proposes integrated energy-aware techniques and a convolutional neural network (CNN) for a cardiac arrhythmia detection system that can be worn during sport training sessions. The dynamic power management strategy (DPMS) is programmed into an ultra-low-power microcontroller, and in combination with a photovoltaic (PV) energy harvesting (EH) circuit, achieves a battery-life extension towards a self-powered operation. The CNN-based analysis filters, scales the image, and using a bicubic technique, interpolates the measurements to subsequently classify the electrocardiogram (ECG) signal into normal and abnormal patterns. Experimental results show that the EH-DPMS achieves an extension in the battery charge for a total of 14.34% more energy available, which represents 12 consecutive workouts of 45 min without the need to manually recharge it. Furthermore, an arrhythmia detection precision of 98.6% is achieved among the experimental sessions using 55,222 images for training the system with the MIT-BIH, QT, and long-term ST databases, and 1320 implemented on a wearable system. Therefore, the proposed wearable system can be used to monitor an athlete’s condition, reducing the risk of abnormal heart conditions during sports activities

    Energy Efficient Framework for a AIoT Cardiac Arrhythmia Detection System Wearable during Sport

    No full text
    The growing market of wearables is expanding into different areas of application such as devices designed to improve and monitor sport activities. This in turn is pushing research on low-cost, very low-power wearable systems with increased analysis capabilities. This paper proposes integrated energy-aware techniques and a convolutional neural network (CNN) for a cardiac arrhythmia detection system that can be worn during sport training sessions. The dynamic power management strategy (DPMS) is programmed into an ultra-low-power microcontroller, and in combination with a photovoltaic (PV) energy harvesting (EH) circuit, achieves a battery-life extension towards a self-powered operation. The CNN-based analysis filters, scales the image, and using a bicubic technique, interpolates the measurements to subsequently classify the electrocardiogram (ECG) signal into normal and abnormal patterns. Experimental results show that the EH-DPMS achieves an extension in the battery charge for a total of 14.34% more energy available, which represents 12 consecutive workouts of 45 min without the need to manually recharge it. Furthermore, an arrhythmia detection precision of 98.6% is achieved among the experimental sessions using 55,222 images for training the system with the MIT-BIH, QT, and long-term ST databases, and 1320 implemented on a wearable system. Therefore, the proposed wearable system can be used to monitor an athlete’s condition, reducing the risk of abnormal heart conditions during sports activities
    corecore